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INTRODUCTION: The human immune system
develops across several anatomical sites through-
out gestation. Immune cells differentiate initially
from extra-embryonic yolk sac progenitors and
subsequently from aorto-gonad-mesonephros–
derived hematopoietic stem cells before liver
and bone marrow take over as the primary
sites of hematopoiesis. Immune cells from these
primary hematopoietic sites then seed devel-
oping lymphoid organs and peripheral non-
lymphoid organs. Recent advances in single-cell
genomics technologies have facilitated studies
on the developing immune system at unprec-
edented scale and resolution. However, these
studies have focused on one or a few organs

rather than reconstructing the entire immune
system as a distributed network across tissues.

RATIONALE: To provide a detailed characteriza-
tion of the developing immune system across
multiple organs, we performed single-cell RNA
sequencing (scRNA-seq) using dissociated cells
from yolk sac, prenatal spleen, and skin, and
integrated publicly available cell atlases of
six additional organs, spanning weeks 4 to 17
after conception. To further characterize de-
velopmental B and T cells and explore their
antigen receptor repertoire, we also generated
paired gd T cell receptor (gdTCR)–, ab T cell
receptor (abTCR)–, and B cell receptor (BCR)–

sequencing data. Finally, to study the spatial
localizations of cell populations in early hema-
topoietic tissue and lymphoid organs critical
for B and T cell development, we performed
spatial transcriptomics on prenatal spleen, liver,
and thymus and used the scRNA-seq data as a
reference to map the cells in situ.

RESULTS: We have integrated a cross-tissue
single-cell atlas of developing human immune
cells across prenatal hematopoietic, lymphoid,
and nonlymphoid peripheral organs. This in-
cludes over 900,000 cells from which we iden-
tified over 100 cell states.
Using cross-gestation analysis, we revealed

the acquisition of immune-effector functions
of myeloid and lymphoid cell types from the
second trimester, and their early transcrip-
tomic signatures suggested a role in tissue mor-
phogenesis. Through cross-organ analysis, we
identified conserved processes of proliferation
and maturation for monocytes and T cells
before their migration from the bone marrow
and thymus, respectively, into peripheral tis-
sues. We discovered system-wide blood and
immune cell development, in particular B lym-
phopoiesis, across all sampled peripheral
organs. This expands on previous understand-
ing of conventional hematopoietic organs (yolk
sac, liver, and bone marrow) as the only sites
for immune cell development. We validated the
presence and location of lineage-committed
progenitors spatially using 10X Genomics
Visium Spatial Gene Expression and single-
molecule fluorescence in situ hybridization.
Finally, we identified and functionally validated
the properties of human prenatal innate-like B
and T cells, providing an extensive characteriza-
tion of human B1 cells with single-cell transcrip-
tomic and BCR information, as well as functional
validation of spontaneous antibody secretion.
Integrating the transcriptome profiles of human
prenatal unconventional T cells, their abTCR
V(D)J usage, and data from an in vitro thymic
organoid culture model, we supply additional
evidence for thymocyte–thymocyte selection
during unconventional T cell development.

CONCLUSION: Our comprehensive single-cell
and spatial atlas of the developing human im-
mune system provides valuable resources and
biological insights to facilitate in vitro cell en-
gineering and regenerative medicine and to
enhance our understanding of congenital dis-
orders affecting the immune system.▪

RESEARCH

Suo et al., Science 376, 1069 (2022) 3 June 2022 1 of 1

The list of author affiliations is available in the full article online.
*Corresponding author. Email: mrc38@cam.ac.uk (M.C.),
m.a.haniffa@newcastle.ac.uk (M.H.); st9@sanger.ac.uk (S.A.T.)
†These authors contributed equally to this work.
Cite this article as C. Suo et al., Science 376, eabo0510
(2022). DOI: 10.1126/science.abo0510

READ THE FULL ARTICLE AT
https://doi.org/10.1126/science.abo0510

HDCA database

Data generation

Spatial transcriptomics

In vitro differentiation

Cross-tissue
integration

Liver

Functional heterogeneity
across gestation

Origin of
innate-like T cells

Human B1 cells
characterization

System-wide
blood and immune cell

development

Bone marrow

GutKidney

Thymus

Cross-organ
immune cell

variation

Skin

CD27CD43

scRNA-Seq

scVDJ-seq

AAAA
AAAA

AAAA

D JV

T–T
selection Unconventional

Yolk sac

Lymph
nodes

Spleen

Cross-tissue mapping of the developing human immune system. We reconstructed the process of immune
cell development, analyzing cells across prenatal hematopoietic, lymphoid, and peripheral organs, combining
scRNA-seq, scVDJ-seq, and spatial transcriptomics. With this integrated dataset, we studied variation in cellular
phenotypes across development and between tissues and the distribution of blood and immune cell progenitors
across tissues and characterized fetal-specific innate-like B and T cells.
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Single-cell genomics studies have decoded the immune cell composition of several human prenatal
organs but were limited in describing the developing immune system as a distributed network across
tissues. We profiled nine prenatal tissues combining single-cell RNA sequencing, antigen-receptor
sequencing, and spatial transcriptomics to reconstruct the developing human immune system. This
revealed the late acquisition of immune-effector functions by myeloid and lymphoid cell subsets and
the maturation of monocytes and T cells before peripheral tissue seeding. Moreover, we uncovered
system-wide blood and immune cell development beyond primary hematopoietic organs, characterized
human prenatal B1 cells, and shed light on the origin of unconventional T cells. Our atlas provides
both valuable data resources and biological insights that will facilitate cell engineering, regenerative
medicine, and disease understanding.

T
he human immune system develops
across several anatomical sites through-
out gestation. Immune cells differentiate
initially from extra-embryonic yolk sac
progenitors, and subsequently from aorto-

gonad-mesonephros–derived hematopoietic
stem cells (HSCs), before the liver and bone
marrow take over as the primary sites of hema-
topoiesis (1, 2). Immune cells from these pri-
mary hematopoietic sites seed developing
lymphoid organs such as the thymus, spleen,
and lymph nodes, as well as peripheral non-
lymphoid organs.
Recent advances in single-cell genomics

technologies have revolutionized our under-
standing of the developing human organs (3–11).

However, these studies have focused on one
or a few organs rather than reconstructing
the entire immune system as a distributed
network across all organs. Such a holistic under-
standing of the developing human immune
system would have far-reaching implications
for health and disease, including cellular en-
gineering, regenerative medicine, and a deeper
mechanistic understanding of congenital dis-
orders affecting the immune system.
Here, we present a cross-tissue single-cell

and spatial atlas of developing human immune
cells across prenatal hematopoietic organs
(yolk sac, liver, and bone marrow), lymphoid
organs (thymus, spleen, and lymph nodes),
and nonlymphoid peripheral organs (skin, kid-
ney, and gut) to provide a detailed character-
ization of generic and tissue-specific properties
of the developing immune system. We gen-
erated single-cell RNA-sequencing (scRNA-seq)
data from yolk sac, prenatal spleen, and skin
and integrated publicly available cell atlases of
six additional organs spanning weeks 4 to 17
after conception (3, 4, 7, 8, 10, 11). We also gen-
erated single-cell gd T cell receptor (gdTCR)–
sequencing data and additional, abTCR–, and
B cell receptor (BCR)–sequencing data. Finally,
we integrated the single-cell transcriptome
profiles with in situ tissue location using spatial
transcriptomics.
This study reveals the acquisition of immune-

effector functions of myeloid and lymphoid
lineages from the second trimester, the matu-
ration of developing monocytes and T cells
before peripheral tissue seeding, and system-
wide blood and immune cell development

during human prenatal development. More-
over, we identified, characterized, and func-
tionally validated the properties of human
prenatal B1 cells and the origin of uncon-
ventional T cells.

Integrated cross-organ map of prenatal cell
states in distinct tissue microenvironments

To systematically assess the heterogeneity of
immune cell populations across human pre-
natal hematopoietic organs, lymphoid, and
nonlymphoid tissues, we generated scRNA-
seq data from prenatal spleen, yolk sac, and
skin, which were integrated with a collection
of publicly available single-cell datasets from
the Human Developmental Cell Atlas initia-
tive (3, 4, 7, 8, 10, 11). In total, our dataset com-
prised samples from 25 embryos or fetuses
between 4 and 17 postconception weeks (pcw)
(Fig. 1A) profiled in 221 scRNA-seq libraries.
For 65 of these libraries, paired antigen-receptor–
sequencingdatawereavailable forabTCR,gdTCR,
or BCR (Fig. 1B). After mapping and preprocess-
ing with a unified pipeline, a total of 908,178 cells
were retained after quality control.
To facilitate joint analysis of the data, we

integrated all libraries using single-cell varia-
tional inference (scVI) (12),minimizing protocol-
and embryo-associated variation (fig. S1A)
while retaining differences between organs. In
keeping with previous single-cell atlases of im-
mune cells of prenatal and adult tissues (3, 11, 13),
our data captured the emergence of myeloid
and lymphoid lineages, as well as closely
linked megakaryocytes and erythroid and
non-neutrophilic granulocyte lineages from
hematopoietic progenitors (Fig. 1C and figs.
S1B to S3). Linking transcriptional phenotypes
to paired antigen receptor sequence expression,
we paired abTCR sequences for 28,739 cells,
paired gdTCR sequences for 813 cells, and
paired BCR sequences for 14,506 cells (fig. S1C).
We repeated dimensionality reduction and

clustering on subsets of cells from different
lineages and used marker gene analysis and
comparison with existing cell labels to com-
prehensively annotate cell types across tissues.
In total, we defined 127 high-quality cell pop-
ulations (figs. S4 and S5). Cross-tissue in-
tegration enabled the identification of cell
populations that were too rare to be resolved
by the analysis of datasets from individual
tissues, such as AXL- and SIGLEC6-expressing
dendritic cells (DCs) (14) and plasma B cells
(fig. S4). To facilitate the rapid reuse of our
atlas for the analysis of newly collected sam-
ples, we made the weights from trained scVI
models available to enable mapping of external
scRNA-seq datasets using transfer learning with
single-cell architectural surgery (scArches) (15).
To study the spatial localizations of the cell

populations in an early hematopoietic tissue
and lymphoid organs critical for B and T cell
development, we profiled developing liver,
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thymus, and spleen from two donors at 16 and
18 pcw with spatial transcriptomics (10X Ge-
nomics Visium Spatial Gene Expression). Using
our multiorgan scRNA-seq dataset as a refer-
ence, we performed spatial cell-type deconvo-
lution with cell2location (16) to map cells in
tissue (fig. S6). We used nonnegative matrix

factorization (NMF) of the cell-type abundance
estimates in tissue spots to identify micro-
environments of colocalized cell types in the
profiled tissues in an unbiased manner (Fig.
1D and figs. S7 to S10).
In the developing liver, we recovered ex-

pected signatures of tissue-specific parenchy-

mal cells such as hepatocytes. In addition, we
observed spatial segregation of early and late
erythrocytes, suggesting distinctive hemato-
poietic zones (Fig. 1D and fig. S8). In the de-
veloping thymus, we recovered the localization
of cell types in known histological structures.
Developing T cells, for example, were largely
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Fig. 1. Cross-tissue cellular atlas of the developing human immune system.
(A) Overview of study design and analysis pipeline. scRNA-seq and scVDJ-seq
data were generated from prenatal spleen, yolk sac, and skin, which were
integrated using scVI with a collection of publicly available scRNA-seq datasets.
This cell atlas was used for (i) differential abundance analysis across gestation
and organs with Milo, (ii) antigen receptor repertoire analysis with scirpy
and dandelion, (iii) comparison with adult immune cells and in vitro differentiated
cells with scArches and CellTypist, and (iv) spatial cell-type deconvolution on
10X Genomics Visium data of hematopoietic and lymphoid organs using
cell2location. (B) Summary of analyzed samples by gestational stage (x-axis)
and organ (y-axis). Colors denote the types of molecular assays performed for
each sample. The side bar indicates the total number of cells collected for each

organ (after quality control). (C) Left: UMAP embedding of scRNA-seq profiles
in prenatal tissues (908,178 cells) colored by broad cellular compartments. Right:
bar plot of percentage of cells assigned to each broad compartment for each
of the profiled organs. Raw cell proportions are adjusted to account for FACS-
based CD45 enrichment. The category “other” denotes clusters annotated
as low-quality cells. Eo/Baso/Mast, eosinophils/basophils/mast cells. (D) Repre-
sentative colocalization patterns identified with NMF of spatial cell-type
abundances estimated with cell2location. For each annotated microenvironment, a
dot plot of relative contribution of cell types to microenvironment (top; dot size)
and spatial locations of microenvironments on tissue slides (bottom) are shown,
with the color representing the weighted contribution of each microenvironment to
each spot. Scale bars, 1 mm.
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localized to the thymic cortex, whereasmature
T cells were consistentlymapped to the thymic
medulla. Furthermore, in two of the thymic
tissue sections, we observed aggregates of
lymphoid tissue (hereafter referred to as thymus-
associated lymphoid aggregates). Within these,
we mapped B cell subsets, innate lymphoid
cells (ILCs), andmacrophage subtypes (Fig. 1D
and fig. S9). In the developing spleen, most of
the tissue was highly vascularized. In addition,
within splenic lymphoid aggregates, we were
able to distinguish partially overlapping B and
T cell zones (Fig. 1D and fig. S10).

Heterogeneity of prenatal myeloid cells across
organs and gestation

We first examined the main compartments of
immune cells in our multiorgan dataset to
identify gestation-specific and organ-specific
variability within cell populations.
The myeloid compartment captured the de-

velopment from committed myeloid progeni-
tors to neutrophils, monocytes, macrophages,
and DCs (fig. S4, G and H). Our cross-tissue
analysis distinguished three distinct subsets
of monocytes, which were characterized by a
differential distribution between prenatal bone
marrow and peripheral tissues and by the
expression ofCXCR4, CCR2, or IL1B (17). Among
macrophages, we identified eight broad
macrophage groupings on the basis of their
transcriptome profile (fig. S4H): “LYVE1hi”,
“iron-recycling”, “MHCclass IIhi”, “Kupffer-like”
(18), “microglia-like TREM2hi” (19), “osteoclasts”
(11, 20), and “proliferating” macrophages. As-
signing proliferating cells to the other identi-
fied subsets, we observed a high fraction of
proliferating macrophages in the yolk sac and
within the LYVE1hi subset across organs, sug-
gesting an increased self-renewal potential
(fig. S11).
We compared prenatal and adult immune

cell populations bymapping a cross-tissue adult
dataset of immune cells (21) onto our prenatal
myeloid reference (fig. S12, A and B). We found
that the transcriptional profiles of DC subsets
were conserved between adult and prenatal
counterparts (fig. S12C). Adult monocytes were
most similar to the IL1Bhi and CCR2hi prenatal
populations, and no CXCR4hi monocytes in
nonlymphoid adult tissues were observed (fig.
S13). Most adult macrophages clustered sepa-
rately from the prenatal macrophages, with
the exceptionof erythrophagocyticmacrophages
(fig. S12, B and C). This population includes
macrophages primarily from the spleen and
liver that perform iron-recycling functions (21).
To quantify changes in cellular composi-

tion across gestation, we performed differen-
tial abundance analysis on cell neighborhoods
using Milo (Fig. 2A and fig. S14A) (22). This
analysis reaffirmed well-known compositional
shifts that happen during gestation. For exam-
ple, myeloid progenitor cells decreased in the

liver but increased in the bone marrow, re-
capitulating the transition from liver to bone
marrow hematopoiesis. DCs increased in pro-
portional abundance across multiple tissues,
as previously described in the liver and bone
marrow (3). For several cell populations, we
found that some neighborhoods were enriched
and others depleted across gestation, sug-
gesting evolving transcriptional heterogeneity
during development. This was especially evi-
dent in the macrophage compartment in the
skin and liver (Fig. 2A), with a large fraction
of neighborhoods overlapping the LYVE1hi

and proliferating macrophages enriched in
early gestation. Differential expression analy-
sis revealed the up-regulation of a proinflam-
matory gene signature with chemokines and
cytokines specific to early stages in all macro-
phage subtypes across tissues (Fig. 2B and fig.
S14B). Tumor necrosis factor (TNF) and nu-
clear factor kB (NF-kB) have been implicated
in lymphoid tissue organogenesis (23), and the
chemokines noted here have been associated
with angiogenesis (24–27). Conversely, a large
fraction of neighborhoods within the iron-
recycling andMHCIIhimacrophage populations
were enriched in later stages of gestation. We
found that these subpopulations up-regulated
genes encoding for immune-effector functions
(Fig. 2B, fig. S14C, and table S1). In parallel to
macrophages, we observed similar transcrip-
tional heterogeneity during gestation in mast
cells (Fig. 2A). Specifically, early mast cells in
yolk sac, liver, and skin displayed a similar
proinflammatory phenotype characterized by
expression of TNF andNF-kB subunits, as well
as chemokines associatedwith endothelial cell
recruitment (CXCL3, CXCL2, and CXCL8) (26)
(fig. S15).
These findings suggest that early macro-

phages andmast cells may contribute to angio-
genesis, tissuemorphogenesis, and homeostasis,
as previously reported (28–30), before adopt-
ing traditional immunological functions. The
acquisition of macrophage antigen-presentation
properties (e.g., MHCII up-regulation) be-
tween 10 and 12 pcw coincided with the ex-
pansion of adaptive lymphocytes (fig. S1E) and
the development of lymphatic vessels and
lymph nodes (31).
Differential abundance analysis on cell neigh-

borhoods to test for organ-specific enrichment
(fig. S16A) revealed that CXCR4hi monocytes
were enriched in bone marrow and IL1Bhi

monocytes were enriched in peripheral organs.
Among CCR2hi monocytes, we distinguished
bone marrow– and peripheral organ–specific
subpopulations (Fig. 2C). Bone marrow CCR2hi

monocytes expressed proliferation genes, whereas
peripheral organ CCR2himonocytes up-regulated
IL1B and other TNF-a–signaling genes (Fig.
2D, fig. S16B, and table S2). This suggests that
a CXCR4hi to CCR2hi transition accompanies
monocyte egress from the bone marrow to

seed peripheral tissues, andCCR2himonocytes
further mature in tissues into IL1Bhi mono-
cytes (Fig. 2, D and E). Inmouse bonemarrow,
interactions between monocyte CXCR4 and
stromal cell CXCL12 retain monocytes in situ
until CCR2-CCL2 interactions predominate,
potentially enablingmonocyte egress (17).Here,
we observed CXCL12 expression in bone mar-
row fibroblasts and osteoblasts (fig. S16C). By
contrast, the proportion of CXCR4hi monocytes
in the developing liver was much lower (fig.
S16D), in keeping with reports that alternative
mechanisms ofmonocyte retention and release
operate in the murine developing liver (32).

Heterogeneity of prenatal lymphoid cells
across organs and gestation

The lymphoid compartment captures the de-
velopment of B and T cells, together with ILC
and natural killer (NK) cell subsets (fig. S4,
I to L).
Mapping adult cells onto our prenatal lym-

phoid reference, NK cells and type 3 ILCs
(ILC3) displayed high similarity between adult
and prenatal counterparts (fig. S17, A and B).
Among adult T cells, naive populations and
regulatory T cells (Tregs) closely matched pre-
natal conventional T cells (CD4+ T, CD8+ T,
and Tregs), whereas resident and effector mem-
ory T cells did not have a developmental
equivalent (fig. S17, C and D), although we
cannot exclude the possibility that memory
T cells appear after 17 pcw, as previously
reported (33, 34). We did not find a clear
matching between adult T cell subsets and
prenatal unconventional T cells (type 1 and
type 3 innate T cells and CD8AA T cells in
our annotation). All adult B cell progenitors,
naive B cells, andmemory B cells had prenatal
counterparts, but no adult B cells were tran-
scriptionally similar to prenatal putative B1
cells (fig. S17C).
Differential abundance analysis across ges-

tation identified a broad shift from innate to
adaptive immune populations (Fig. 3A and fig.
S18A). ILCs and NK cells included cell neigh-
borhoods that were both enriched and depleted
across gestation. Genes involved in inflamma-
tory responses, including TNF signaling, were
overexpressed in <12 pcw liver and skin NK
cells, although late splenic NK cells also ex-
pressed these genes. Conversely, late NK cells
across organs overexpressed genes involved in
cytokine signaling and granzyme genes (Fig.
3B; fig. S18, B and C; and table S3). As is the
case for macrophages, these results suggest the
progressive development of immune-effector
function by NK cells.
We next tested for organ-specific cell neigh-

borhoods in the lymphoid compartment (fig.
S19A). Although certain populations ofmature
T cells were exclusively enriched in the thymus
[ABT(entry), CD8AA], we found that neighbor-
hoods of conventional and unconventional
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T cells could be subdivided into a subset en-
riched in the thymus and other subsets en-
riched in peripheral organs (Fig. 3C). Thymic
mature T cells overexpressed genes involved in

interferon-a (IFN-a) signaling, whereas periph-
eral mature T cells had higher expression of
genes associated with TNF and NF-kB signal-
ing (Fig. 3D, fig. S19B, and table S4). Both path-

ways have been implicated in the last stages of
functional maturation of murine T cells right
before emigration out of the thymus (35, 36).
In addition to the increase in type I IFN and
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Fig. 2. Myeloid variation across time and tissues. (A) Bee-swarm plot of log-fold
change (x-axis) in cell abundance across gestational stages in Milo neighborhoods
of myeloid cells. Results from five organs are shown. Neighborhoods overlapping the
same cell population are grouped together (y-axis) and colored if displaying
significant differential abundance (DA) (spatial FDR < 10%). The black dot denotes
the median log-fold change. The top bar denotes the range of gestational stages
of the organ samples analyzed. (B) Heatmap of average expression across time of
a selection of markers of stage-specific macrophage neighborhoods. Mean log-
normalized expression for each gene is scaled (z-score). Gestational ages are
grouped in six age bins. Age bins in which <30 cells of a given subset were present
are not shown. The top panel shows the fraction of all macrophages belonging to
the specified macrophage population in each time point and each organ (color).
(C) Close-up view of monocytes on Milo neighborhood embedding of myeloid cells

(subset from fig. S16). Top: neighborhoods are colored by overlapping cell
population. Bottom: neighborhoods displaying significant DA (spatialFDR < 10%) are
colored by log-fold change in abundance between the specified organ and all
other organs. (D) Mean expression of a selection of differentially expressed genes
between CCR2hi monocytes from bone marrow (BM) and other organs. Log-normalized
expression for each gene is scaled (z-score). Genes up-regulated in bone marrow
associated with G2/M checkpoint and genes down-regulated in bone marrow
associated with TNF signaling are shown (from MSigDB Hallmark 2020 gene sets).
(E) Schematic of the proposed process of monocyte egression from the bone
marrow mediated by CXCR4 and CCR2 expression: CXCR4hi monocytes are retained
in the bone marrow until they switch to a proliferative state with increased
expression of CCR2, mediating tissue egression. CCR2hi monocytes seed peripheral
tissues and then mature further to the periphery-specific IL1B-expressing subtype.
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NF-kB signaling accompanying ABT(entry) to
thymic mature T cells, expression of NF-kB-
signaling genes continued to increase when
mature T cells migrate out to peripheral tis-
sues (Fig. 3E).

System-wide blood and immune cell development

While examining the distribution of various
cell types across different organ systems, we

were surprised to find that lineage-committed
hematopoietic progenitors were present in
nonhematopoietic organs. In particular, we
detected B cell progenitors in almost all pre-
natal organs, megakaryocyte/erythroid progen-
itors in developing spleen and skin, and
myeloid progenitors in the thymus, spleen,
skin, and kidney (Fig. 4A). By contrast, T cell
progenitors were restricted to the thymus, po-

tentially reflectingmore stringent niche require-
ments for T cell development and consistent
with the observed absence of T cells in chil-
dren with congenital athymia (37). This finding
suggests that hematopoiesis is not restricted
to developing liver and bone marrow between
7 and 17 pcw (38) and that other organs can
also support blood and immune cell differen-
tiation during prenatal development.
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Fig. 3. Lymphoid variation across time and tissues. (A) Bee-swarm plot of
log-fold change (x-axis) in cell abundance across gestational stages in Milo
neighborhoods of lymphoid cells (as in Fig. 2A). (B) Heatmap showing average
expression across time of a selection of genes identified as markers of early-
specific and late-specific NK neighborhoods (as in Fig. 2B): NK cells identified in
liver and skin before 12 pcw express TNF proinflammatory genes, whereas the
expression of immune-effector genes such as cytokines, chemokines, and
granzyme genes increases after 12 pcw. Age bins in which <30 NK cells were
present in a given organ are grayed out. (C) Close-up view of single-positive
T cells on Milo neighborhood embedding of lymphoid cells. Each point represents
a neighborhood, and the layout of points is determined by the position of the

neighborhood index cell in the UMAP in fig. S4I. Top: neighborhoods are colored
by the cell population they overlap. Bottom: neighborhoods are colored by
their log-fold change in abundance between the specified organ and all other
organs. Only neighborhoods displaying significant differential abundance
(spatialFDR < 10%) are colored. (D) Mean expression of a selection of
differentially expressed genes between single-positive T cells from thymus (TH)
and other organs. Genes down-regulated in the thymus associated with TNF
signaling (using MSigDB Hallmark 2020 gene sets) and genes up-regulated in the
thymus associated with an IFN-a response are shown. (E) Schematic of the
proposed mechanism of thymocyte maturation and egression from thymus
mediated by type I IFN and NF-kB signaling.
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In addition, across progenitor lineages, cells
of different developmental stages were simul-
taneously present in peripheral organs (fig. S20,
A to D). Cell-fate prediction analysis delineated
a continuum of cells between HSCs and dif-
ferent lineages of immune cells in multiple
organs (fig. S20, C and D), supporting the con-
clusion that lineage-committed differentiation
takes place within peripheral organs.
Single-molecule fluorescence in situ hybrid-

ization (smFISH) staining confirmed the ex-

istence of lineage-committed progenitors in
multiple organs. Cells simultaneously express-
ing VPREB1 and RAG1, with or without DNTT
were present in the prenatal gut, spleen, and
thymus (Fig. 4B and fig. S21, A to C), consistent
with B cell progenitors. Although some B cell
progenitors in the prenatal gutwere associated
withCDH5-expressingbloodvessels,many could
be detected extravascularly (Fig. 4B), further
supporting the conclusion that B cells develop
in prenatal peripheral organs. We also vali-

dated thepresence ofmegakaryocyte/erythroid
lineage progenitors in the prenatal spleen
and thymus (fig. S22, A to C) and of myeloid
lineage progenitors in the prenatal gut and
thymus (fig. S23, A to C).
Focusing on B lymphopoiesis given its wide-

spread nature, we used cell2location (16) on
10X Genomics Visium spatial transcriptomic
data and found that B cell progenitors were
localized in the submucosa of the gut, in thymus-
associated lymphoid aggregates, and proximal
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Fig. 4. System-wide blood and
immune cell development.
(A) Boxplots of the number of
progenitor cells in all donors
across organs. Each point repre-
sents a donor, color coded by
organ. YS, yolk sac; LI, liver;
BM, bone marrow; TH, thymus;
SP, spleen; MLN, mesenteric
lymph node; SK, skin; GU, gut;
KI, kidney. The red dashed line
marks the threshold of 10 cells for
potential technical artifacts.
Detailed cell types included in
each lineage are shown in table
S5. Boxes capture the first-to-
third quartile of the cell number,
and whisks span a further 1.5×
interquartile range on each side of
the box. (B) Multiplex smFISH
staining with DAPI, CDH5 for
endothelial cells, and VPREB1,
DNTT, and RAG1 for B cell pro-
genitors in the human prenatal
intestine at 15 pcw. Left panel
shows a zoomed-out view with the
area of interest boxed in white.
Scale bar, 500 mm. Right panel
shows a detailed view of the area
of interest. Scale bar, 50 mm.
Gray arrows point to B cell
progenitors associated with blood
vessels, and orange arrows point
to B cell progenitors away from
blood vessels. (C) Scaled sum
of abundances of B progenitor cell
types estimated with cell2location,
shown on representative slides
for each organ, with the
corresponding H&E staining.
Scale bars, 1 mm. (D) Cell-
type contributions to microenvi-
ronments containing B cell
progenitors in different organs
identified with nonnegative matrix
factorization of spatial cell-type
abundances estimated with cell2-
location. The color and the size of
the dots represent the relative
fraction of cells of a type assigned
to the microenvironment.
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to lymphoid aggregates in the spleen (fig. S24B),
in addition to their expected presence in the
developing liver (Fig. 4C and fig. S24A). The
widespread nature of B lymphopoiesis sug-
gests that the cellular environments support-
ing B cell development are much more widely
available than previously thought. Spatial
transcriptomic data identified cells colocaliz-
ing with B cell progenitors across multiple
organs, including ILC3, LYVE1hi macrophages,
NK cells, type 1 innate T cells, and LMPP_MLP
cells (see fig. S24C for predicted cell-cell in-
teractions), whereas other colocalizing cell
types were organ specific (Fig. 4D).

Identification of putative prenatal B1 cells

Among prenatal nonprogenitor B cells that
had productive BCR light chains and low IL7R
expression (fig. S25A), we identified immature
B, mature B, cycling B, plasma B, and putative
B1 cells (Fig. 5A and fig. S25B). These putative
B1 cells had the highest expression of CD5,
CD27, and SPN (CD43), consistent with previ-
ously reported markers (39–41), as well as
CCR10, a highly specific marker that was ex-
pressed in a subset of B1 cells (Fig. 5A).
We next evaluated characteristics typical of

murine B1 cells, including self-renewal (42, 43),
high immunoglobulin M (IgM) and low IgD
expression (44), emergence in early devel-
opment (45), low levels of nontemplated nu-
cleotide BCR insertions (46, 47), tonic BCR
signaling (39), and spontaneous antibody se-
cretion (42).
With regard to B1 cell self-renewal, we cal-

culated the percentage of cycling cells (as in-
dicated by nonzero MKI67 expression) within
immature B, mature B, B1, and plasma B cells,
respectively (Fig. 5B and fig. S26A). The pro-
portion of cycling B1 cells was significantly
higher than cycling mature B cells, consistent
with their capacity for self-renewal. B1 cells
expressed lower levels of IGHD and higher
levels of IGHM compared with mature B cells
(Fig. 5B). Moreover, the highest frequency of
B1 cells was found in the early embryonic
stages. These were gradually replaced by other
subsets of nonprogenitor B cells over time. The
ratio of B1 to mature B cells showed a general
decrease from the first to second trimester
across most organs except the thymus (fig.
S26B), where B1 cells persisted, consistent with
a previous report of a shared phenotype be-
tween thymic B cells and B1 cells (48).
Analysis of nontemplated nucleotide inser-

tions in the BCR showed that both N/P addi-
tions and CDR3 junctions in heavy and light
chains were shorter in B1 cells compared with
mature B cells (Fig. 5C). Moreover, a lower mu-
tation frequency was observed in light chains
of B1 cells compared with those in mature
B cells, and the average mutation frequency
was lower than that observed in adult B cells
(21, 49). We next examined the V(D)J usage

within different B cell subtypes along the de-
velopmental path (fig. S26C). Prenatal B1 and
mature B cells both exhibited a varied BCR
repertoire with minimal clonal expansion (fig.
S26D) and had differing preferential usage of
V(D)J segments (Fig. 5D).
Our putative B1 cells showed features of

tonic BCR signaling, with higher B cell activ-
ation scores (fig. S26E), as well as higher
transcription factor (TF) activity in the TNF-a–
andNF-kB–signaling pathway (fig. S26F), which
is downstream of BCR signaling (50), com-
pared with mature B cells.
We assessed spontaneous antibody secre-

tion capacity in B1 cells by flow-sorting B cell
subsets (fig. S26G) and assessing spontaneous
IgM secretion using the enzyme-linked im-
mune absorbent spot (ELISpot) assay. The
normalized antibody-secreting spot counts
were higher in the two B1 fractions than in the
two mature B fractions, with the CCR10hi B1
fraction showing the highest spot counts (Fig.
5E). scRNA-seq of the sorted B cell fractions on
a different sample using the same gating strat-
egy further confirmed that the two sorted B1
fractions were indeed B1 cell enriched com-
pared with the mature B fractions (fig. S26H).
We also explored the potential role of CCR10 in
prenatal B1 cells and observed the expression
of one of its ligands, CCL28, in bone marrow
stroma (chondrocytes and osteoblasts), in gut
epithelium, and in keratinocytes and melano-
cytes in the skin (fig. S26I). Thus, CCR10 may
play a role in the tissue localization of prenatal
B1 cells.
Overall, our scRNA-seq, paired V(D)J–

sequencing data, and functional assay pro-
vide an extended characterization of human
prenatal B1 cells (Fig. 5F).

Human unconventional T cells are trained by
thymocyte-thymocyte selection

The mature T cell compartment consisted of
conventional T cells (CD4+ T cells, CD8+ T cells,
and Tregs) and unconventional T cells. The
origin of the latter in humans is poorly under-
stood. Unconventional T cells expressed the
key innate marker ZBTB16 (PLZF) (fig. S27A)
(51) and could be further separated into three
different subtypes: RORC- and CCR6-expressing
type 3 innate T cells; EOMES- and TBX21-
expressing type 1 innate T cells; and PDCD1-
expressing and thymus-restricted CD8AA cells
(figs. S2 and S4L), corresponding, respectively,
to T-helper 17 (TH17)–like cells, NK T cell (NKT)–
like cells, and CD8aa+ T cells (7).
The proportions of unconventional T cells

among all mature T cells exhibited a decreas-
ing trend from 7 to 9 pcw to 10 to 12 pcw across
most of the organs surveyed here (fig. S27B).
Type 1 and type 3 innate T cells were almost
negligible in postnatal thymus, whereas CD8AA
T cell abundance rebounded in pediatric age
groups before a further decline in adulthood

(fig. S27B). Thus, type 1 and type 3 innate
T cells, but not CD8AA T cells, appear to be
developmental-specific, unconventional T cells.
Spatially, we found that mature T cells seg-

regated into two microenvironments in the
thymic medulla (fig. S27C). Conventional CD4+

T and CD8+ T cells colocalized with medullary
thymic epithelial cells (mTECs) close to the in-
ner medulla, whereas CD8AA and type 1 innate
T cells colocalized with type 1 DCs (DC1s) near
the corticomedullary junction (fig. S27, D and
E). Tregs and type 3 innate T cells were located
within both microenvironments. Thus, in con-
trast to conventional T cells, CD8AA and type I
innate T cells likely undergo distinct negative
selection processes mediated by DCs rather
than mTECs and may also be involved in DC
activation, as previously suggested (7).
Single-cell sequencing of gdTCR and abTCR

was performed on a subset of samples to
characterize antigen-receptor repertoires in
unconventional T cells (Fig. 1B). By far, most
unconventional T cells expressed paired abTCR,
but some of these cells expressed paired gdTCR
(Fig. 6A). Most gdT cells expressed TRGV9 and
TRDV2 (Fig. 6B), consistent with previous re-
ports (52, 53). However, there was also a large
proportion of gdT cells, particularly those of
theCD8AAand type3 innateT cell subtypes, that
expressed TRGV8 or TRGV10 instead (Fig. 6B).
Thus, the gdTCR showed a relatively restricted
repertoire and substantial clonal expansion
(fig. S28B).
Prenatal unconventional T cells expressed a

varied abTCR repertoire (Fig. 6C and fig. S28C)
with minimal clonal expansion (fig. S28D), un-
like well-described unconventional T cell sub-
sets [e.g., type I NKT and mucosal-associated
invariant T (MAIT) cells] in adults (54). V-J
gene usage in TCRawas previously observed
to have a strong associationwith T cell develop-
mental timing (7, 55). Specifically, double-positive
(DP) T cells tend to use proximal TRAV, TRAJ
gene segments, whereasmature T cells tend to
use more distal pairs, governed by the proc-
essive depletion of proximal segments in V-J
gene recombination (55). The V-J gene usage
of abTCR-expressing unconventional T cells
lies between that of DP cells and conventional
T cells, as shown by the more proximal gene
usage in unconventional T cells (Fig. 6C) and
principal component analysis of the TCR re-
pertoire (Fig. 6D). This suggests that uncon-
ventional T cells are developmentally closer to
DP cells (Fig. 6E) and undergo fewer recombi-
nations before positive selection.
Previous studies have suggested that these

PLZF-expressing unconventional T cells may
originate from positive selection on neighbor-
ing T cells (51, 56–58), in contrast to conven-
tional T cells arising from positive selection on
cortical TECs (cTECs). After b-selection, DP
T cells undergo proliferation before recombi-
nation of TCRa (7, 59, 60). Each DP cell is thus
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Fig. 5. Identification of putative prenatal B1 cells. (A) Left: Close-up view of
nonprogenitor B cell populations on UMAP embedding of all lymphoid cells
(fig. S4I), with marker genes listed next to each cell type. Right: expression of
B1 marker genes on UMAP. (B) Top: dot plot of IGHM and IGHD expressions
in B1 and mature B cells, with the color of dots representing the mean
expression and size representing the fraction of cells expressing the gene.
Bottom: cycling cell proportions within each B cell subtype colored by organs,
with dot size representing log10(cell count) and only dots with at least
10 cells shown. B1 cells had significantly higher cycling proportions than mature
B cells in a logistic regression controlling for donors and organs. (C) Point

plots of NP-addition length, CDR3 junction length, and mutation frequency in
BCR heavy chains or light chains in B1 cells (n = 2357) and mature B cells
(n = 7387), with points representing the mean and lines representing 95%
confidence intervals. Heavy-chain VD and DJ junction NP-addition lengths are
only calculated for cells with high-quality D gene mapping (B1 cells: n = 615;
mature B cells: n = 2430). Difference in characteristics were tested with linear
regressions controlling for donors and organs. (D) Volcano plot summarizing
results of BCR heavy- and light-chain V,J gene segment usage comparison
between B1 and mature B cells. The y-axis is the −log10(Benjamini-Hochberg–
adjusted P value), and the x-axis is log(odds ratio) computed using logistic
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surrounded by several neighboring DP cells
from the same clone. It is therefore plausible
that it requires less physical migration and thus
is quicker for a DP T cell to receive positive sig-
naling from a neighboring DP T cell rather than
having to migrate to meet a nearby cTEC. Thus,
the fact that unconventional T cells have amore
similar TCR usage to DP cells agrees with the
thymocyte-thymocyte (T-T) origin hypothesis.
To test our hypothesis for T-T–mediated

selection of unconventional T cells, we differ-
entiated induced pluripotent stem cells (iPSCs)
into mature T cells using the artificial thymic
organoid (ATO) (61). There were no human
TECs present in the ATO system (Fig. 6F).
scRNA-seq analysis of differentiated cells har-
vested at weeks 3, 5, and 7 from two iPSC lines
confirmed that the in vitro culture system re-
capitulated T cell development from double-
negative (DN) and DP, to ABT(ENTRY), and
then to single-positive mature T cells (SP_T)
(Fig. 6F and fig. S29, A to C). SP_T cells dif-
ferentiated in vitro were dominated by ZBTB16-
expressing unconventional T cells (Fig. 6G).
Both label transfer (Fig. 6G) and similarity scor-
ing onmerged embeddings (fig. S29D) showed
that the in vitro SP_Tweremost similar to in vivo
type 1 innate T cells. Thus, our in vitro ex-
periments support the T-T origin hypothesis of
unconventional T cells.

Discussion

Our study provides a comprehensive single-
cell dataset of the developing human immune
system, spanning >900,000 single-cell profiles
fromnine tissues and encompassing >100 cell
states. Compared with previous multiorgan
developmental atlases (9), we increased cov-
erage of developmental organs, gestation stages,
and sequencing depth and generated paired
BCR, abTCR, and gdTCR datasets. Moreover,
we demonstrate the utility of scRNA-seq refer-
ence to delineate tissue organization and cel-
lular communication in spatial transcriptomics,
providing a proof-of-concept study of the local-
izations of immune cells across prenatal tissues.
Our preprocessed data and pretrained models
(scVI and CellTypist models) will facilitate the
alignment of new data to our dataset and
streamline future expansion and analysis of
human developmental atlases.
Our cross-organ analysis revealed several

important biological phenomena. First, human
macrophages, mast cells, and NK cells tran-
scriptomically acquire immune-effector func-
tions between 10 and 12 pcw. Their transcriptomic
signatures before this time point suggest a role
in tissue morphogenesis, consistent with pre-

vious findings for murine macrophages (62),
and may explain why these cells appear in
early development. The coincidental develop-
ment of the lymphatic system around 12 pcw
(31) raises the possibility of its potential role in
initiating this transcriptional switch. Second,
there are conserved processes of proliferation
and maturation for monocytes and T cells
before their migration from the bone marrow
and thymus, respectively, into peripheral tis-
sues. Third, in contrast to the previous dogma
of hematopoiesis being restricted to the yolk
sac, liver, and bone marrow during human
development, system-wide blood and immune
cell development takes place in peripheral or-
gans, although at varying extents in different
lineages. It is possible that hematopoiesis is
supported to varying levels in prenatal organs,
including the adrenal gland (9), before the
onset of functional organ maturation, as ex-
emplified by the fetal liver, which transitions
from a hematopoietic to a metabolic organ.
The potential for other peripheral organs to
support hematopoiesis is evidenced by the
reemergence of extramedullary hematopoiesis
in adults, primarily in pathological settings
(63–66), as well as the recent description of B
lymphopoiesis in murine and nonhuman pri-
mate meninges (67–69).
Finally, this work identifies and functionally

validates the properties of human prenatal
innate-like B and T cells and provides an ex-
tensive characterization of human B1 cells.
Our in vivo abTCR V(D)J usage patterns and
in vitro T cell differentiation data proposes
T-T selection underpinning unconventional
T cell development. Further studies are re-
quired to establish whether B1 cells arise from
different progenitors (lineage model) (70–72)
or from the same progenitors but with differ-
ent signaling (selectionmodel) (73, 74), similar
to the conventional and unconventional T cell
model proposed here. Both innate-like B and
T cells were abundant during early develop-
ment, and their precise role at this develop-
mental time pointwarrants further investigation.
Their reported debris-removal (41, 42), antigen-
reactivity (41, 42, 54), and regulatory functions
(42) may confer these prenatal innate-like B
and T cells with tissue-homeostatic and im-
portant immunological roles.
In summary, this comprehensive atlas of the

developing human immune system provides
valuable resources and biological insights to
facilitate in vitro cell engineering and regen-
erative medicine and to enhance our under-
standing of congenital disorders affecting the
immune system.

Materials and Methods
A more detailed version of the materials and
methods is provided in the supplementary
materials.

Tissue acquisition and processing

Human developmental tissue samples (4 to
17 pcw; see metadata in table S7) used for this
study were obtained from the MRC-Wellcome
Trust–funded Human Developmental Biology
Resource (HDBR; http://www.hdbr.org) with
written consent and approval from the New-
castle andNorth TynesideNHSHealth Author-
ity Joint Ethics Committee (08/H0906/21+5).
All tissues were digested into single-cell sus-
pensions with 1.6 mg/ml type IV collagenase
(Worthington).

scRNA-seq experiment

Dissociated cells were stained with anti-CD45
antibody and 4′,6-diamidino-2-phenylindole
(DAPI) before sorting. For scRNA-seq experi-
ments, either the Chromium Single Cell 3′
Reagent Kit or the Chromium Single Cell
V(D)J Reagent Kit from 10X Genomics was
used. Unsorted, DAPI–CD45+, or DAPI–CD45–

fluorescence-activated cell sorting (FACS)–
isolated cells were loaded onto each channel of
the Chromium chip. Single-cell cDNA synthe-
sis, amplification, gene expression, and tar-
geted BCR and TCR libraries were generated.
Targeted enrichment for gdTCR was per-
formed following the TCR enrichment pro-
tocol from 10X Genomics with customized
primers (table S8) (75). Sequencing was per-
formed on the Illumina Novaseq 6000 system.
The gene expression libraries were sequenced
at a target depth of 50,000 reads per cell using
the following parameters: read 1: 26 cycles, i7:
eight cycles, i5: zero cycles; read 2: 91 cycles
to generate 75-bp paired-end reads. BCR and
TCR libraries were sequenced at a target depth
of 5000 reads per cell.

ATO cell cultures

The PSC-ATO protocol was followed as previ-
ously described (61) (for more details, see the
supplementary materials). Two iPSC lines,
HPSI0114i-kolf_2 (Kolf) and HPSI0514i-fiaj_1
(Fiaj), obtained from the Human Induced Plu-
ripotent Stem Cell Initiative (HipSci; www.
hipsci.org) collection, were used.

Visium

Optimal cutting temperature (OCT) medium–
embedded freshly frozen samples (table S9)
were used for 10X Genomics Visium. All tis-
sues were sectioned with a thickness of 15 mm.
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regression controlling for donors and organs. (E) Normalized proportions of
antibody-secreting cells in different sorted fractions of the ELISpot experiments
(raw counts in table S6), colored by donor. Each point represents a reaction
well. The proportions of antibody-secreting cells were normalized against the

average proportion in CCR10hi wells for each donor to remove donor-specific
effects. A representative well image for each sorted fraction is shown on
the bottom. (F) Schematic illustration summarizing the features of all human
prenatal B1 cells and additional features specific to CCR10hi prenatal B1 cells.
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Fig. 6. Deep characterization of human unconventional T cells. (A) Proportions
of cells expressing paired gdTCR, paired abTCR, both, or neither. The
proportions were calculated over cells that had both single-cell abTCR and
gdTCR sequencing. Expression of neither paired abTCR nor paired gdTCR in
some cells could be due to dropouts in single-cell TCR sequencing because
>50% of these contained orphan VDJ or VJ chains of abTCR or gdTCR
(fig. S28A). (B) Heatmap showing the percentage of each gdTCR gene segment
present in different T cell subtypes. Differential usage between cell subtypes
was computed using the chi-squared test. Gene segments with Benjamini-
Hochberg–adjusted P values < 0.05 are marked with asterisks. (C) Heatmap

showing the proportion of each TCRa gene segment present in different T cell
subtypes. The gene segment usage in unconventional T cells and conventional
T cells was compared using logistic regression, controlling for donors and
organs. Gene segments with Benjamini-Hochberg–adjusted P values < 0.05
are marked with magenta asterisks for preferential usage in unconventional
T cells and green asterisks for preferential usage in conventional T cells.
(D) Principal component analysis plot summarizing TRAV, TRAJ, TRBV, and
TRBJ gene segment usage proportion in different T cell subtypes. Each dot
represents a sample of at least 20 cells, with dot size representing the cell count.
The centroid of each cell type is shown as a filled circle, and 80% confidence
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Optimal 18-min permeabilization was selected
for fetal spleen and liver, and a 24-min per-
meabilization was used for fetal thymus. The
spatial gene expression library was then gen-
erated following the manufacturer’s protocol.
All images for this process were acquired
with an Axio Imager (Carl Zeiss Microscopy)
and a 20× air objective [0.8 numerical aperture
(NA)] using either fluorescence (Zeiss Axiocam
503 monochrome camera) for optimization or
bright-fieldmode (Zeiss Axiocam 105 color cam-
era) for hematoxylin & eosin (H&E) imaging.
ZEN (blue edition) v.3.1 software was used for
acquisition and stitching of the image tiles.

smFISH

smFISHwas performed on thymus, spleen, and
gut sections using the RNAScope 2.5 LS multi-
plex fluorescent assay (ACD, Bio-Techne) on
the automated BONDRX system (Leica). Slides
were stained for DAPI (nuclei), and three or
four probes of interest were stained with fluo-
rophores atto 425, opal 520, opal 570, and
opal 650. Positive and negative control probes
were used to optimize staining conditions for
all tissues.
For fetal gut and spleen, OCT-embedded,

freshly frozen, 10-mm-thick sections were pre-
treated offline for 15 min with chilled 4% para-
formaldehyde and dehydrated through an
ethanol series (50, 70, 100, and 100% ethanol)
before processing on the Leica BONDRXwith
protease IV for 30 min at room temperature.
The sections were imaged on a PerkinElmer
Opera Phenix High Content Screening System
(16-bit sCMOS camera, PerkinElmer) with a
20× water objective (High NA, PerkinElmer).
Because of the high levels of endogenous
autofluorescence, one of the spleen sections
(fig. S21A) was imaged with a confocal micro-
scope (Leica SP8) with a 40× 1.3 NA oil im-
mersion objective and SP8 Leica HyD and
PMT detectors.
Because of the high cellular density in thymic

sections, 3-mm-thick formalin-fixed, paraffin-
embedded sections that were treated on the
Leica Bond RX with epitope retrieval 2 for
15 min at 95°C and protease III for 15 min at
40°C were used. Imaging was performed on an
Operetta CLS High Content Screening System
(16-bit sCMOS camera, PerkinElmer) with a
40× water objective (High NA, PerkinElmer)
and 2-mm z-steps.

scRNA-seq analysis
Preprocessing

The gene expression data were mapped with
cellranger 3.0.2 to anEnsembl 93–basedGRCh38

reference (10X Genomics–distributed 3.0.0 ver-
sion). Ambient RNA was removed with cell-
bender v0.2.0 (76). Low-quality cells were
filtered out [minimum number of reads =
2000,minimumnumberof genes=500, Scrublet
(v0.2.3) (77) doublet detection score <0.4]. Pos-
sible maternal contamination was identified
using the souporcell pipeline for genotyping
(v.2.4.0) (78) (for more details, see the supple-
mentary materials).

Data integration and annotation

Data normalization and preprocessing were
performed using the Scanpy workflow (v1.8.1)
(79). Raw gene read counts were normalized
by sequencing depth in each cell (scanpy.pp.
normalize_per_cell, with parameters counts_
per_cell_after=10e4) and performed ln(x)+1
transformation. Highly variable genes were
then selected for joint embedding by dispersion
(scanpy.pp.highly_variable_genes with param-
eters min_mean = 0.001, max_mean = 10).
Dimensionality reduction and batch correc-
tion were performed using the scVImodel (12)
as implemented in scvi-tools (v0.14.5) (80),
considering 10X Genomics chemistry (5′ and
3′) and the donor ID for each cell as the tech-
nical covariates to correct for (training param-
eters: dropout_rate = 0.2, n_layers = 2). The
model was trained on raw counts of the 7500
most highly variable genes, excluding cell cycle
genes and TCR/BCR genes (7) with 20 latent
dimensions. To verify conservation of biolog-
ical variation after integration, the available
cell-type labels from the published datasets
(66% of cells) were collected and harmonized,
and the agreement between labels across
different datasets was quantified in the cell
clusters identified after integration using the
normalized mutual information score, as im-
plemented in scikit-learn (81). Unless other-
wise specified, cell clustering was performed
using the Leiden algorithm (82) (resolution =
1.5, n_neighbors = 30). To verify robustness to
the choice of integration method, integration
was performed in parallel using batched-
balanced k-nearest neighbor (BBKNN) (83), as
previously described (7) (fig. S30A). It was
verified that clustering after integration with
both scVI and BBKNN was consistent with
previous annotations (fig. S30B).
To annotate fine cell populations across

tissues, cells were clustered in the scVI latent
space and preliminarily assigned to broad line-
ages using the expression of marker genes and
previous annotations. For each broad lineage,
scVI integration and clustering were repeated
as described above and further subsets were

defined (see hierarchy in fig. S5). Leiden clus-
ters for the highest-resolution subsets (stroma,
megakaryocyte/erythroid, progenitors, lymph-
oid, and myeloid) were annotated manually
using themarker panels shown in fig. S4 (for a
more detailed description of annotation strat-
egy, see the supplementary materials). It was
verified that refined annotations were highly
consistent with unsupervised clustering after
integration on the full dataset both with scVI
and BBKNN (fig. S30C).
After full annotation, 23,156 cells (2.5% of

total) were assigned to low-quality clusters
(doublet clusters, maternal contaminants clus-
ters, and clusters displaying a high percentage
of reads from mitochondrial genes).

Differential abundance analysis

Differences in cell abundances associated with
gestational age or organ were tested for using
the Milo framework for differential abundance
testing (22), with the Python implementation
milopy (https://github.com/emdann/milopy).
A more detailed description of this analysis
can be found in the supplementary materials
and methods.
Briefly, the dataset was subsetted to cells

from libraries obtained with CD45+ FACS,
CD45– FACS, or no FACS, excluding FACS-
isolated samples for which the true sorting
fraction quantification could not be recovered.
In total, 228,731 lymphoid cells and 214,874
myeloid cells were retained. To further mini-
mize the differences in cell numbers driven
by FACS efficiency, a FACS correction factor
was calculated for each sample to use as a
confounding covariate in differential abun-
dance testing (fig. S32 and supplementary
materials and methods). A KNN graph was
constructed using similarity in the scVI em-
bedding (k = 30 for test across gestation, k =
100 for test across tissues) and cells were as-
signed to neighborhoods (milopy.core.make_
nhoods, parameters: prop = 0.05). The cells
belonging to each sample in each neighbor-
hood were then counted (milopy.core.count_
cells). Each neighborhood was assigned a cell-
type label on the basis of majority voting of
the cells belonging to that neighborhood.
A “mixed” label was assigned if the most
abundant label was present in <50% of cells
within that neighborhood.
To test for differential abundance across

gestational age, the sample ages were divided
into six equally sized bins (bin size = 2 pcw)
and samples from organs in which fewer than
three consecutive age bins were profiled were
excluded (yolk sac, mesenteric lymph node,
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contours are shown around the centroids. Arrows illustrate the proposed
developmental trajectories. (E) Schematic illustration showing the T-T training origin
of unconventional T cells in contrast to the T-TEC training origin of conventional
T cells. (F) Top: schematic showing the experimental setup of T cell differentiation

from iPSCs in ATOs. Bottom left: UMAP visualization of different cell types in the ATO.
Bottom right: density plots of cells from each time point over UMAP embedding.
(G) Left: predicted annotations from logistic regression overlaid on the same UMAP
plot as in (F); right: ZBTB16 expression pattern overlaid onto the same UMAP plot.
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kidney, and gut). The cell count in neighbor-
hoods was modeled as a negative-binomial
generalized linear model using a log-linear
model to model the effects of age on cell
counts while accounting for the FACS correc-
tion factor and the total number of cells over all
neighborhoods. Multiple testing was controlled
for using the weighted Benjamini-Hochberg
correction, as described in (22). To detect
markers of early-specific neighborhoods [spa-
tial false discovery rate (spatialFDR) < 0.1,
logFC < 0] and/or late-specific neighborhoods
[spatialFDR < 0.1, logFC > 0] in cell type c and
organ o, differential expression was tested for
between cells from organ o assigned to the sig-
nificant neighborhoods labeled as cell type c
and cells belonging to all other neighborhoods
labeled as cell type c. The t-test implementa-
tion in scanpywas used (scanpy.tl.rank_genes_
groups,method = “t-test_overestim_var”). Genes
expressed in >70% of tested cells were excluded.
Genes were considered as significantly overex-
pressed (i.e., markers) if the differential expres-
sion logFC > 1 and FDR < 0.1%. Gene set
enrichment analysis was performed using the
implementation of the EnrichR workflow (84)
in the Python package gseapy (https://gseapy.
readthedocs.io/). The list of significantly over-
expressed genes for all organs and cell types in
which differential expression testing was per-
formed can be found in tables S1 and S3.
To test for differential abundance between

organs, the cell countwasmodeled in neighbor-
hoods as above, using a log-linear model to
model the effects of organ on cell counts while
accounting for FACS correction factor, library
prep protocol, and the total number of cells
over all the neighborhoods. Neighborhoods in
which bon > 0 and spatialFDR < 0.01 were
considered to be the cell subpopulations
that showed organ-specific transcriptional
signatures.
Having identified a subset of neighborhoods

overlapping a cell type that was enriched in a
certain organ, differential expression analysis
was performed between these cells and cells
from the same cell type (for more details, see
the supplementary materials and methods).
Briefly, single-cell expression profiles were first
aggregated into pseudobulk expression profiles
x̂ for each cell type c and sample s [as recom-
mended by (85, 86)].
The mRNA counts of gene g in pseudobulk

p were then modeled by a negative-binomial
generalized linear model:

�xg;p ¼ NB mg;pfg;p
� �

The expected count value mn,p is given by the
following log-linear model:

log mg;p ¼ b0 þ dpb
donor
g þ opb

organ
g

þ cpb
celltype
g þ cpopb

organ�celltype
g

þ log Lp

The log-fold change borgan�celltypeg in expression
in a given cell type for organ ô was estimated
using the quasi-likelihood method (87) imple-
mented in the R package glmGamPoi (85).
The estimated logFC from the test on a set of
control cell types (where organ-specific differ-
ences would not be expected) was used to fil-
ter out genes in which differential expression
is driven by technical differences in tissue
processing. The full results for the differential
expression analysis between organs in mature
T cells and monocytes are provided in tables
S2 and S4.

TCR analysis

Single-cellabTCR-sequencingdataweremapped
with cellranger-vdj (v.6.0.0). The output file
filtered_contig_annotations.csv was used and
analyzed with scirpy (v.0.6.0) (88). Single-cell
gdTCR-sequencing data were mapped with
cellranger-vdj (v.4.0.0). All contigs deemedhigh
quality were selected and re-annotated with
igblastn (v.1.17.1) against IMGT (international
ImMunoGeneTics) reference sequences (last
downloaded: 01/08/2021) through a workflow
provided in dandelion (v0.2.0) (89) (https://
github.com/zktuong/dandelion). The output
file all_contig_dandelion.tsv was used and
analyzed with scirpy (v0.6.0).

BCR analysis

Single-cell BCR data were initially processed
with cellranger-vdj (v.6.0.0). BCR contigs con-
tained in all_contigs.fasta and all_contig_
annotations.csv were then processed further
using dandelion (89) singularity container
(v.0.2.0). BCRmutation frequencies were ob-
tained using the observedMutations function
in shazam (v.1.0.2) (90) with default settings.

B cell activation scoring

The Gene Ontology B Cell Activation gene list
was downloaded from the Gene Set Enrich-
mentAnalysiswebsite (http://www.gsea-msigdb.
org/gsea/msigdb/genesets.jsp). Cells were scored
according to expression values of all genes in this
gene list, apart from three genes that were not
present in the dataset using scanpy.tl.score_
genes() function.

Transcription factor activity inference

The Python package DoRothEA (v.1.0.5) (91)
was used to infer TF activities in B1 cells and
mature B cells. TFs that had higher activities
(positive “mean change”) in B1 cells were then
ranked according to their adjusted P values,
and only the top 25 TFs are shown in fig. S26F.

Cell-cell interaction analysis

The Python package CellPhoneDB (v.3.0) (92, 93)
was used to infer cell-cell interactions. The
scRNA-seq dataset was split by organ, and cell
types with <20 cells in a given organ were fil-
tered out. CellPhoneDB was run separately to

infer cell-cell interactions in each organ using
default parameters. To explore cell-cell interac-
tions betweenBcell progenitors and colocalizing
cell types (fig. S24D), the interactions predicted
between each colocalizing cell type were ag-
gregated by averaging themeans and using the
minimum of the P values to filter for signifi-
cance. The ligand-receptor pairs that were sig-
nificant (P < 0.05) across all three organs, liver,
spleen, and thymus,were filtered and rankedby
themaximum aggregatedmeans. Only the top
60 ligand-receptor pairs are shown in fig. S24C.

Query-to-reference mapping

Query data were mapped to our prenatal data
embeddings using online update of the scVI
models following the scArches method (15),
as implemented in the scvi-tools package
(80). The model was trained for 200 epochs
and by settingweight_decay = 0 to ensure that
the latent representation of the reference cells
remained exactly the same. Reference genes
missing in the query were set to zero, as rec-
ommended in (15). To generate a joint em-
bedding of query and reference cells, the latent
dimensions learned for query cells were con-
catenated to the latent dimensions used for
the reference embedding and the KNN graph
and uniform manifold approximation and
projection (UMAP) were computed as des-
cribed above. To assess that the mapping to
the developmental reference conserved bio-
logical variation while minimizing technical
variation in the query data, query cell-type
labels and batch labels were compared with
clusters obtained fromLeiden clustering on the
learned latent dimensions using the normal-
ized mutual information score (see fig. S33 for
mapping of adult query data).

Annotation prediction using CellTypist

The Python package CellTypist (v.0.1.9) (21) was
used to perform annotation prediction with
logistic regression models. For prediction on
cycling B cells, the rest of the nonprogenitor
B cells, including immature B,mature B, B1, and
plasma B cells, were used as a training dataset.
Default parameters were used formodel build-
ing, and prediction was made without major-
ity voting for accurate enumeration of predicted
B cell subtypes within cycling B cells.

Comparison with human adult immune cells

scRNA-seq data from adult immune cells were
generated and preprocessed as described prev-
iously (21). The dataset, including cell-type
annotations, was downloaded from https://
www.tissueimmunecellatlas.org/. A total of
264,929 adult lymphoid cells were mapped
to the lymphoid embeddings of our devel-
opmental dataset and 54,047 adult myeloid
cells to our myeloid embedding. To use cell
annotations in our developmental dataset to
predict adult cell types in the joint embedding,
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the KNN-classifier approach described in (15)
was adapted and the similarity to prenatal cells
labeled was calculated taking the Euclidean
distance in the joint embedding weighted by
a Gaussian kernel.

Blood and immune cell progenitor
scRNA-seq data analysis

For the cell fate prediction analysis shown in
fig. S20, C and D, the Palantir method as im-
plemented in CellRank was used (94, 95).
Briefly, from the scVI embedding on all im-
mune cells (fig. S20A), cells belonging to pro-
genitor populations were selected and a
KNN graph on scVI latent dimensions on
these cells was computed (k = 30). Then, tran-
sition probabilities were calculated using the
ConnectivityKernel in the cellrank package.
Coarse-grained macrostates were calculcated
with the Generalized Perron Cluster Cluster
Analysis, setting the number of macrostates to
the number of annotated progenitor cell popu-
lations. The four target terminal states were set
manually for each lineage (small pre B cells,
DN(Q) T cells, early megakaryocytes, and prom-
onocytes) and the probability of each cell to
transition to one of the four terminal states
was calculated. The fate simplex visualization
in fig. S20, C and D, was generated using the
function cellrank.pl.circular_projection.

ATO scRNA-seq data analysis

Raw scRNA-seq reads were mapped with cell-
ranger 3.0.2 with combined human reference
of GRCh38.93 and mouse reference of mm10-
3.1.0. Low-quality cells were filtered out [mini-
mum number of reads = 2000, minimum
number of genes = 500, minimum Scrublet
(77) doublet detection score <0.4]. Cells in
which the percentage of counts from human
genes was <90% were considered as mouse
cells and were excluded from downstream
analysis. Cells were assigned to different cell
lines (Kolf and Fiaj) using genotype prediction
with souporcell (v.2.4.0) (78). Batch correction
was performed to minimize the differences
between cells from different cell lines using
scVI and clustered cells using the Leiden algo-
rithm on the latent embedding as described
above. The Python package CellTypist (v.0.1.9)
(21) was used to perform annotation predic-
tion with logistic regression using the whole
in vivo scRNA-seq developmental dataset for
training. For the in vivo to in vitro similarity
analysis in fig. S29D, in vitro cells weremapped
to the scVI model of lymphoid cells as de-
scribed above. For each cell in the in vitro
dataset, the Euclidean distance weighted by a
Gaussian kernel to the closest in vivo cell from
each in vivo cell population was calculated.

Spatial data analysis

Spatial transcriptomics dataweremapped using
spaceranger (v.1.2.1), and a custom image-

processing script was used to identify regions
overlapping tissues. To map cell types identi-
fied by scRNA-seq in the profiled spatial tran-
scriptomics slides, the cell2location method
was used (16) (see the supplementary mate-
rials and methods). Briefly, for the reference
model training step, very lowly expressed genes
were excluded using a recommended filtering
strategy (16). Cell types inwhich <20 cells were
profiled in the organ of interest and cell types
labeled as low-quality cells were excluded
from the reference. For the analysis of un-
conventional T cell localization in thymus (fig.
S27C), a reference adding all the prenatal TECs
from a thymus cell atlas was trained (7) [data
were downloaded from Zenodo (96)]. For the
spatial cell-type deconvolution step, all slides
representing a given organ were analyzed
jointly. To identify microenvironments of
colocalizing cell types, NMF was used on the
matrix of estimated cell-type abundances.
Here, latent factors correspond to tissue micro-
environments defined by a set of colocalized
cell types. The NMF implementation in scikit-
learn was used (81), setting the number of
factors at 10. For downstream analysis, cell
types in which the 99% quantile of cell abun-
dance across locations in every slide from
the same organ was always below the detec-
tion threshold of 0.15 were excluded. Unless
otherwise specified, a cell typewas considered
to be part of a microenvironment if the cell-
type fraction was >0.2.
For analysis of mature T cell localization in

the thymic medulla (fig. S27, D and E), factors
in which the sum of the cell-type fractions for
mature T cells (CD4+, CD8+, Treg, type 1 innate,
type 3 innate, and CD8AA T cells) was >0.8
were retained. Spots were assigned to the in-
ner medulla or corticomedullary microenvi-
ronment if the factor value in the spot was
above the 90% quantile of all values in the
slide. To annotate cortex and medulla from
histology images, image features were extracted
from the high-resolution images of H&E stain-
ing using the Python package squidpy (v1.1.2)
(97), and Leiden clustering was performed on
image features. The corticomedullary junction
was then defined using spatial neighbor graph
functionality in squidpy (see the supplemen-
tary materials and methods).

B1 functional validation experiment

Cryopreserved single-cell suspensions fromF144
(17 pcw) and F145 (15 pcw) spleen samples
were used for the ELISpot experiment. B cells
were gated as singlet DAPI–CD3–CD20+ cells.
Plasma cells should generally be CD20lo and
therefore are not included. To further exclude
plasma cell contamination, the top 1% of B
cells expressing the highest level of CD38 were
gated out. The rest of the B cells were then
sorted into four fractions: CCR10hi, CCR10lo

CD27+CD43+,CCR10loCD27–CD43+, andCCR10lo

CD27–CD43–. CD27 andCD43 gateswere chosen
on the basis of fluorescence minus one controls.
The ELISpot experiment was performedwith

the Human IgM ELISpotBASIC kit (ALP) from
Mabtech AB. After sorting, 7000 to 8000 cells
were added into an ELISpot plate precoated
with anti-IgM antibody and incubated at 37°C
for 22 hours. The plate was then washed and
incubatedwith biotinylated anti-IgM for 2 hours
at room temperature, followed by a 1-hour in-
cubation with streptavidin-ALP. The colored
spots were developed with a 15-min incuba-
tion of 5-bromo-4-chloro-3-indolyl phosphate
(BCIP)/nitro blue tetrazolium (NBT) substrate
solution. Spots were counted with the AID
ELISpot reader and iSpot software version 4.
In addition, scRNA-seq of the sorted B cell

fractions was performed on a different donor
(F149, 18 pcw fetal spleen) using the same
gating strategy to further confirm the identity
of sorted cells. The scRNA-seq data were pre-
processed with scVI as above. Cell annotations
were predicted using CellTypist v.0.1.9 (21).
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An expansive view of immunity’s start
Although recent single-cell genomics studies have offered profound insights into the developing human immune
system, they have not conceptualized the immune system as a distributed network across many tissues. Suo et al.
integrated single-cell RNA sequencing, antigen-receptor sequencing, and spatial transcriptomics of nine prenatal
tissues to reconstruct the immune system’s development through time and space. They describe late acquisition of
immune effector functions by macrophages and natural killer cells and the maturation of monocytes and T cells before
peripheral tissue seeding. Moreover, they describe how blood and immune cell development occurs, not just in primary
hematopoietic organs, but across peripheral tissues. Finally, the authors characterize the development of various
prenatal innate-like B and T cell populations, including B1 cells. —STS
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